skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Khalil, Ibrahim"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available February 14, 2026
  2. Abstract In this work, the physical phenomenon of the polydisperse micro-particle entrainment process from density mismatch mixture is investigated with the variation of substrate withdrawal speed. A liquid carrier system (LCS) is prepared by a polymer-based binder and an evaporating solvent. Nickel-based inorganic and spherical particles with a. moderate vol%. of 35% are added to the LCS solution. The cylindrical AISI 1006 mild steel wire substrate is dipped at different withdrawal speed ranging from 0.01 mms-1 to 20 mms-1. The binder vol%. is varied between 6.5% and 10.5%. Once the cylindrical substrate is extracted from the mixture, the surface coverage and the particle size are measured following the image analysis technique. The average particle size, coating thickness and the surface packing coverage by the particles are increasing with the higher withdrawal speed of the substrate. We observed relatively low size of particles (< 10 micrometers) as well as low surface coverage (∼33%) when the withdrawal speed remains at 0.01 mm/s. However, with high withdrawal speed (20 mm/s), we found all sizes of particles present on the substrate with a surface coverage of over 90%. The finding of this research will help to understand the high-volume solid transfer technique and develop a novel manufacturing process. 
    more » « less