- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Khalil, Ibrahim (3)
-
Khoda, Bashir (2)
-
Alam, Adeeb (1)
-
Badsha, Shahriar (1)
-
Gramlich, William (1)
-
Hossain, Md Tamjid (1)
-
Islam, Shafkat (1)
-
La, Hung (1)
-
Shovon, S. M. (1)
-
Shovon, S.M. Naser (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 14, 2026
-
Khoda, Bashir; Gramlich, William; Shovon, S.M. Naser; Khalil, Ibrahim (, Progress in Organic Coatings)
-
Shovon, S. M.; Khalil, Ibrahim; Alam, Adeeb; Khoda, Bashir (, Proceedings of the ASME 2022 17th International Manufacturing Science and Engineering Conference)Abstract In this work, the physical phenomenon of the polydisperse micro-particle entrainment process from density mismatch mixture is investigated with the variation of substrate withdrawal speed. A liquid carrier system (LCS) is prepared by a polymer-based binder and an evaporating solvent. Nickel-based inorganic and spherical particles with a. moderate vol%. of 35% are added to the LCS solution. The cylindrical AISI 1006 mild steel wire substrate is dipped at different withdrawal speed ranging from 0.01 mms-1 to 20 mms-1. The binder vol%. is varied between 6.5% and 10.5%. Once the cylindrical substrate is extracted from the mixture, the surface coverage and the particle size are measured following the image analysis technique. The average particle size, coating thickness and the surface packing coverage by the particles are increasing with the higher withdrawal speed of the substrate. We observed relatively low size of particles (< 10 micrometers) as well as low surface coverage (∼33%) when the withdrawal speed remains at 0.01 mm/s. However, with high withdrawal speed (20 mm/s), we found all sizes of particles present on the substrate with a surface coverage of over 90%. The finding of this research will help to understand the high-volume solid transfer technique and develop a novel manufacturing process.more » « less
An official website of the United States government
